

B.TECH. (SEM-VII) THEORY EXAMINATION 2021-22 **ENGINEERING HYDROLOGY**

Time: 3 Hours

Total Marks: 100

 $2 \ge 10 = 20$

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

- What do you mean by rain gauge network? a.
- How vapor pressure effects the evaporation. b.
- Explain Φ -Index. c.
- Define AET and PET. d.
- Define effluent and influent streams with diagram. e.
- f. Draw a Hydrograph showing its integral components?
- Write the formula involved in Gumbel's method of flood routing. g.
- What do you mean by envelop curve. h.
- What is specific yield? i.
- What is Aquiclude and Aquitard? j.

SECTION B

2. Attempt any *three* of the following:

- Explain the water budget method of evaporation estimation. a.
- Explain flooding type infiltrometer along with neat sketch. b.
- Ordinates of 4-hr unit hydrograph for area 630 km² are given below. Derive the c. ordinates of 2-hrund hydrograph using S-Curve method. 10 10 12 14 16 18 20 22 24 T(1,...)

1 (nr)		4	0	0	10	12	14	10	18	20	ZZ	24
$Q(m^3/s)$	25	100	160	190	170	110	70	30	20	6	1.5	0
An urhan	at a la ma a	at laga		on of	0 95 1	2 T		1.000.0	of t		atalama	ant i

, C

d. An urban atchment has an area of 0.85 km². The slope of the catchment is 0.006 and the maximum length of travel of water is 950 m. the maximum depth of rabiall with a 25-year return period is below:

Duration (min)	5	10	15	30	40	60
Depth of rainfall	17	26	40	50	57	62

If a culvert for drainage at the outlet of this area is to be designed for a return period of 25 year, Determine the required peak flow rate, by assuming coefficient as 0.3.

Discuss the principle of recuperation test of an open well. e.

SECTION C

3. Attempt any one part of the following:

- Explain different forms of precipitation. What is the difference between (a) cyclones and anti-cyclones?
- How to calculate the mean precipitation over an area using Thiessen polygon (b) method. Explain with the help of neat sketch.

$10 \ge 3 = 30$

 $10 \ge 1 = 10$

4. Attempt any *one* part of the following:

PER ID-410316

A storm of 10 cm of precipitation produced a direct runoff of 5.8 cm. The (a) duration of the rainfall was 16 hrs. Design Φ - Index.

Roll No:

Time from start(h)	0	2	4	6	8	10	12	14	16
Cum. Rainfall(cm)	0	0.4	1.3	2.8	5.1	6.9	8.5	9.5	10

What is evapo-transpiration? What are the different methods to stop the (b) evaporation from reservoir?

5. Attempt any one part of the following:

- How the method of superposition can be utilized to calculate the mD-hr unit (a) hydrograph from D-hr Unit hydrograph. Briefly explain with an appropriate example.
- Draw a neat sketch of flood hydrograph. Briefly explain its component parts. (b)

6. Attempt any one part of the following:

Route the following hydrograph through a river reach for which K = 12.0 h and (a) x = 0.20. At the start of the inflow flood, the outflow discharge is 10 m³/s.

Time,	0	6	12	18	24	30	36	42	48
hr						*			
Inflow,	10	20	50	60	55	45	35	27	20
m^3/s				•					

(b) A bridge has an expected life of 30 years and is designed for a flood magnitude of 130 years. Calculate risk involved. What return period have to be adopted if 13% risk is acceptable.

7. Attempt any one part of the following:

- What are different types of saturated formations? Explain with the help of (a) diagrams, also derive an equation to calculate discharge from a well in case of confined aquifer
- Write short note on any four of the following: (b)

(i)Aquifer

(ii) Perched aquifer

(iii) Storativity

(iv) Specific retention

(v) Equivalent Permeability

$10 \ge 1 = 10$

$10 \ge 1 = 10$

 $10 \ge 1 = 10$

 $10 \ge 1 = 10$